
Getting more confident with
your security helper libraries
thanks to Go fuzzing

10 November 2022

Jeremy Matos
Principal Security Engineer

jmatosgrafana

Agenda

● Path traversal with Go

● Introduction to Go Fuzzing

● Fuzzing more complex code

● Writing predicates can be hard

● Next steps

Grafana: Our first 0-day in December 2021

● Responsibly disclosed by a researcher on December 2nd 2021 - path traversal in

the Go code of Grafana: CVE-2021-43798

● Out of excitement, he tweeted about path traversal

● Actively exploited On December 7th, making it a 0-day

● Security fix released on December 7

But are we not protected by Go standard library?

https://nvd.nist.gov/vuln/detail/CVE-2021-43798
https://j0vsec.com/post/cve-2021-43798/
https://grafana.com/blog/2021/12/08/an-update-on-0day-cve-2021-43798-grafana-directory-traversal/

filepath.Clean
is tricky

filepath.Clean is tricky

● Reading the doc too quickly:

Clean returns the shortest path name equivalent to path

● The devil is in the details:
○

https://pkg.go.dev/path/filepath#Clean

filepath.Clean in simple words

● It removes any “..” sequence for
○ All the inner elements

○ The first element if it starts with /

● It does not remove the first “..” element if it does not start with a /

The vulnerable code

● Vulnerability

● Interesting comment in code about a gosec warning:
It's safe to ignore gosec warning G304 since we already clean the requested file path

● gosec warning G304
○ File path provided as taint input

○ The right way: use filepath.Clean !

https://github.com/grafana/grafana/blob/c80e7764d84d531fa56dca14d5b96cf0e7099c47/pkg/api/plugins.go#L292
https://github.com/grafana/grafana/blob/c80e7764d84d531fa56dca14d5b96cf0e7099c47/pkg/api/plugins.go#L300
https://github.com/securego/gosec
https://securego.io/docs/rules/g304.html
https://securego.io/docs/rules/g304.html#the-right-way

The fixed code

● The corresponding PR
○ The fix

○ Added 1 unit test

● Improvements discussed
○ Normalize URL in all routes

○ Silencing gosec rule (with the risk of not fixing the issue)

○ Security helper library

https://github.com/grafana/grafana/pull/42846
https://github.com/grafana/grafana/blob/main/pkg/api/plugins.go#L307
https://github.com/grafana/grafana/blob/main/pkg/api/plugins_test.go#L196
https://github.com/grafana/grafana/pull/46089/files
https://github.com/grafana/grafana/pull/46316#discussion_r823520590
https://github.com/grafana/grafana/issues/46441

Introducing
Go Fuzzing

Go Fuzzing

● Fuzzing in a few words
○ Extend unit tests by predicates describing “things that should never happen”

○ Generate many pseudo random inputs and test them against those predicates

● Available natively from Go 1.18
○ Identified violations trigger the creation of corresponding test data

○ Never ending loop (by default)

○ Multithreaded

● Rather than following the tutorial, let’s use the previous path traversal fix as example

https://go.dev/security/fuzz/
https://go.dev/doc/tutorial/fuzz

Go Fuzzing example 1: validation logic

● Extracting the validation logic in a simple method

● Source code

https://github.com/jmatosgrafana/gofuzzing/blob/main/clean_path/cleanpath.go

Go Fuzzing example 1: writing the predicates

● Writing the fuzzing test

https://github.com/jmatosgrafana/gofuzzing/blob/main/clean_path/cleanpath_test.go

Go Fuzzing example 1: launch fuzzing

● Make sure that you have at least go 1.18
○ go version

● First validate that unit tests are passing
○ go test

● Start the fuzzing loop
○ go test –fuzz=Fuzz

https://github.com/jmatosgrafana/gofuzzing/blob/main/launch_fuzzing.sh

Go Fuzzing example 1: fixing the predicates

● Trial and error when writing down the predicates
○ Fuzzing will find violations that are in fact valid outputs

● For some corner cases it will be hard to define if it is valid or invalid output
○ Fuzzing helps to make requirements more explicit

○ Less ambiguity, less vulnerabilities

Go Fuzzing example 1: fixing the predicates

● E.g. changing the previous example with this new condition:

strings.Contains(cleaned, "../")

legit input ? valid output ?

Fuzzing
more

complex
helpers

Go Fuzzing example 2: validation logic

● Source code used when checking signature of a Grafana plugin

https://github.com/jmatosgrafana/gofuzzing/blob/main/relative_symlink/relative_symlink.go

Go Fuzzing example 2: abstracting the predicates

● Writing the fuzzing test

https://github.com/jmatosgrafana/gofuzzing/blob/main/relative_symlink/relative_symlink_test.go

Go Fuzzing example 2: writing the predicates

● Re-implementing some logic for the fuzzing test

https://github.com/jmatosgrafana/gofuzzing/blob/main/clean_path/cleanpath_test.go

Go Fuzzing example 2: finding a corner case

● Launch fuzzing
--- FAIL: FuzzSymlinks (0.00s)

relative_symlink_test.go:20: Input: "../..", Output: true, Expected: false

Failing input written to testdata/fuzz/FuzzSymlinks/f959aa1c4f02[...]aab8

● go test will now fail with the added content in testdata folder

● Discussion about expected behavior in this Grafana PR

● The fix in the validator logic:

https://github.com/jmatosgrafana/gofuzzing/blob/main/launch_fuzzing.sh
https://github.com/grafana/grafana/pull/50537/files#r898946872

Writing
predicates

can be hard

Writing predicates can be challenging

● Fuzzing works best on small size helpers
○ Simple functions that have an easy to describe behaviour

○ More chance to have an obvious predicate implementation,

e.g. ‘should not contain this character sequence’

● For medium size helpers, complex validation logic requires reimplementation
○ Copy pasting the original implementation in the fuzz test provides no value

○ Not getting biased by the original implementation

To which extent should standard libraries be trusted?

Lessons learned validating Grafana filestorage_api

● Re-implementing the rather complex ValidatePath function was time

consuming

● Did not identify any violation

● Not 100% confident some corner cases have not been forgotten

https://github.com/grafana/grafana/blob/main/pkg/infra/filestorage/api.go

Next steps

Next steps

● Make security helpers as simple as possible

● Include fuzzing in the CI/CD pipeline

● Communicate about those “trusted” security helpers

● Validate via semgrep rules that those helpers are indeed used

https://semgrep.dev/docs/

Key takeaways

● Beware of filepath.Clean() when protecting from path traversal

● Fuzzing is useful in real-life to:
○ Improve automated testing coverage
○ Identify corner cases that are not obvious

thus allowing to become more confident with your security helper libraries

● Go Fuzzing is easy to use and efficient as long as you target simple functions

Source code available at https://github.com/jmatosgrafana/gofuzzing

Thank you

https://github.com/jmatosgrafana/gofuzzing

